Four Open Questions for the N-Body Problem
Un livre de Richard Montgomery*

Alain Chenciner!

Le probleme (Newtonien ou classique) des N corps consiste en I'étude des
mouvements que peuvent avoir dans ’espace a trois dimensions /N masses ponc-
tuelles positives my, mo, - - - , my s’attirant mutuellement selon la loi de Newton.
Cela signifie qu’a un instant donné ¢, les positions 7;(t),i = 1,2,--- , N des corps
par rapport a un point pris comme origine forment une solution du systeme
d’équations différentielles du second ordre
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Remplacer les corps par des masses ponctuelles se justifie par la Propositio VIII,
Theorem VIII du livre III des Principia de Newton qui affirme que l'attraction
exercée par un corps ayant une symétrie sphérique est la méme que si toute sa
masse était concentrée au centre de gravité.

Newton lui-méme avait compris qu’expliquer a l'aide de ces équations le
mouvement des planetes du Systeme solaire ne serait pas jeu d’enfant. Des
doutes étaient en particulier apparus au vu de la difficulté de rendre compte du
mouvement de 'apogée de la Lune (voir [7]). Pendant plus de deux siécles des
études de plus en plus raffinées furent consacrées a la “théorie des perturba-
tions”, approximations successives a partir de celle qui, les masses des planetes
étant petites par rapport a celle du Soleil, suppose que leur mouvement pendant
un laps de temps suffisament court n’est sensiblement influencé que par le Soleil
et a donc approximativement lieu le long d’une ellipse keplerienne. De méme,
dans les mouvements de la Lune autour de la Terre on commence par négliger
I'influence du Soleil, 390 fois plus éloigné, par rapport a celle de la Terre.

Des changements déterminants se produisent a la fin du dix-neuvieme siecle
avec les découvertes fondamentales de Poincaré et sa preuve, précisant celle
de Bruns, que le probleme des trois corps est “non-intégrable” au sens ou
n’existe aucune autre quantité conservée (intégrale premiere) que celles dues
aux symétries des équations (voir [9, [10]). On est en fait surpris par la richesse
des comportements qu’engendrent, des que le nombre de corps est au moins
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égal a trois, des équations apparemment aussi simples et une grande partie du
présent livre est dédiée a des questions qui concernent des solutions “globales”
(au sens de non perturbatives) telles celle représentée sur la couverture.

Et quelle bonne idée ce fut, avant une quelconque théorie, d’ouvrir le livre
par un Chapitre —1 (sic!) qui est une introduction visuelle & un certain nombre
de telles solutions globales périodiques du probleme des N-corps, par exemple :

— les orbites kepleriennes lorsque N < 2, et leurs généralisations & un plus
grand nombre de corps, les solutions homographiques découvertes par Euler et
Lagrange pour trois corps, solutions qui sont ’objet de la premiere question ;

— les solutions dites “chorégraphiques” du probleme des N-corps & masses
égales [23], en commengant par le Huit (Moore, Chenciner-Montgomery) qui,
lorsque N = 3, partage avec 1’équilibre relatif équilatéral de Lagrange la pro-
priété que les trois corps se poursuivent a intervalles de temps égaux le long non
plus d’un cercle mais d’une courbe en forme de huit et qui lui est reliée par la
famille P;5 de Marchal. Famille de chorégraphies en repere tournant invariantes
par une action du groupe Dg d’ordre 12 | cette derniere aboutit au Huit en
repere inertiel a partir de la solution équilatérale de Lagrange parcourue deux
fois car considérée dans un repere faisant un tour par période en sens opposé
au mouvement : le cercle parcouru deux fois s’ouvre comme une huitre jusqu’a
former un huit [12] ;

— les Hip-Hop (Chenciner-Venturelli) ol quatre masses égales hésitent dans
R3 entre former un carré qui admettrait un mouvement d’équilibre relatif dans
R? et un tétrahedre régulier pour qui un tel mouvement ne serait possible que
dans R* ;

— la solution de Schubart du probléme de trois masses égales sur la droite qui,
une fois régularisées les collisions doubles, devient périodique, et ses continu-
ations, les solutions de Broucke-Hénon, qui deviennent périodiques en repére
tournant ;

— les solutions de Sitnikov du “probléme restreint des trois corps” dans
lesquelles une masse nulle oscille le long d’une droite orthogonale au plan dans
lequel les deux autres masses décrivent une solution du probleme des deux corps ;

— des solutions dans lesquelles N > 4 corps forment une “singularité de
non-collision”, certains des corps s’échappant a l'infini en temps fini ;

— des solutions chorégraphiques possédant diverses symétries, en particulier
celles de chacun des solides platoniciens.

Ce catalogue est suivi d’'un Chapitre 0 qui, une fois introduite une maniere
géométrique d’écrire les équations de Newton (métrique des masses sur 'espace
des configurations, champ de vecteurs dans I’espace des phases), est essentielle-
ment dédié a I'invariance des équations sous le groupe de symétries de Galilée,
les lois de conservations qui s’en déduisent via le théoreme de Noether — énergie,
moments linéaire et angulaire — et le “probléeme réduit” qui résulte de leur prise
en compte. La symétrie d’échelle due a la forme particuliere du potentiel est
également introduite.

Vient ensuite une vieille connaissance de Richard Montgomery, “’espace
des formes” (Shape Space) dont les éléments sont les formes que peut pren-



dre un ensemble de N corps ponctuels a homothétie et isométrie préservant
Iorientation pres. Lorsque N = 3 cet espace est une sphere de dimension deux
dont I'équateur représente les configurations colinéaires, chaque hémisphere cor-
respondant & l'une des deux orientations possibles du triangle (voir [I8] 2] 22]
et le prologue de [§]). C’est sur cet espace qu’est défini le potentiel normalisé
(shape potential) U = VIU, invariant par homothétie et dont la théorie de
Morse qui lui est associée joue un réle important.

J’en arrive aux Questions : alors que les trois derniéres sont essentiellement
géometriques et méme topologiques, dans 1'esprit de Poincaré, la Question 1 qui
concerne les “configurations centrales” (voir [19]) est purement algébrique. A
ma connaissance, si I'on excepte les points de Lagrange dans le probleme res-
treint des trois corps, Poincaré n’a jamais mentionné les configurations centrales
qui, en plus d’etre associées aux seules solutions explicites du probleme des trois
corps, jouent un role fondamental & la fois dans les changements de topologie des
niveau d’énergie-moment et dans I’analyse des collisions. Leur définition est tres
simple : ce sont les configurations de N corps massifs ponctuels dans R? telles
que, relachés sans vitesse initiale, les N corps s’effondrent homothétiquement
en temps fini sur leur centre de gravité. Dans un espace de dimension paire ces
configurations admettent des solutions de type keplerien, les mouvements ho-
mographique déja mentionnés au cours desquels la configuration ne change pas
a homothétie et isométrie pres. Cas particuliers de ces solutions correspondant
a des mouvements kepleriens d’excentricité nulle, les mouvements d’équilibre
relatif deviennent des équilibres apres réduction par la symétrie de rotation.
L’étude d’un champ de vecteurs commencant naturellement par 1’étude des
équilibres et les équilibres du probleme des N corps n’existant qu’apres une
telle réduction, cela montre 'importance de ces solutions.

La Question 1 : N masses positives étant données, existe-t-il un nombre fini
de configurations centrales a2 homothétie et isométrie pres. Cette question, qui
fait partie de la liste de Smale de probléemes mathématiques pour le prochain
siecle [28], avait été posée par Chazy et Wintner et est le numéro 9 dans la liste
de 17 problémes établie en 2012 par Albouy, Cabral et Santos [1]. Des réponses
positives avaient déja été données, au dix-huitieme siecle par Euler (pour les
configurations colinéaires de trois corps) et Lagrange (le triangle équilatéral
quelles que soient les masses !), en 1910 par Moulton pour le probleme des N
corps sur la droite, en 1996 par Albouy pour quatre masses égales, en 2006 par
Hampton et Moeckel pour 4 masses quelconques et en 2012 génériquement en les
masses (un but sans doute plus réaliste) pour cing corps par Albouy et Kaloshin
[3]. Les configurations centrales étant des points critiques de la restriction a la
sphere des formes du potentiel normalisé U, le probleme est algébrique. I
se révele étre particulitement difficile car recherchant parmi les solutions d’un
systeme d’equations algébriques celles qui sont réelles et positives. Et d’ailleurs,
lorsqu’une des masses est négative, un contre-exemple a la finitude pour N =5
(masses -1,4,4,4,4) a été donné en 1999 par Gareth Roberts [26].

La Question 2 demande s’il existe des orbites périodiques. La classique re-
lation de Lagrange-Jacobi I = 4F + 2U, dans laquelle I est le moment d’inertie



d’une configuration de N corps par rapport au centre de gravité, U la fonc-
tion potentiel (positive) et E = %Ef\il m;||7||?> — U Dénergie totale, implique
que I n’est pas bornée lorsque 1’énergie totale est positive ou nulle. Des or-
bites périodiques ne peuvent donc exister que si I’énergie totale est négative.
L’importance de ces orbites avait été mise en avant par Poincaré qui, deman-
dant si elles pouvaient étre denses dans l’ensemble des solutions bornées du
probleme des trois corps, les avait considérées comme

la seule breche par laquelle pénétrer une place réputée jusqu’ici in-
accessible.

La question concerne ce que, dans sa conférence en 1998 au Congres inter-
national des mathématiciens [14], Michael Herman avait appelé “La question
ouverte la plus ancienne dans les Systémes dynamiques” : arbitrairement pres
des conditions initiales d’une quelconque solution périodique du probleme plan
des trois corps existe-t-il des conditions initiales conduisant a des solutions
non bornées ? Pour le probleme des deux corps dans R? 'énergie est bornée
inférieurement tant que le moment cinétique est différent de zéro, le minimum
(négatif) étant réalisé par le mouvement circulaire. Un résultat analogue pour
le probleme des trois corps dans R? aurait impliqué que les orbites proches d’une
orbite périodique ayant une énergie proche du minimum auraient été piégées,
ce qui aurait impliqué une réponse négative a la “question ouverte la plus an-
cienne”, mais ce n’est pas le cas et la question reste ouverte. Cependant, en
2020 Albouy et Dullin avaient remarqué que, de fagon surprenante, pour le
probléme des trois corps dans R* la méme conclusion que pour le probleme des
deux corps dans R? valait tant que le moment cinétique, était un bivecteur de
rang maximal, c’est-a-dire de rang 4 (voir [2]). Notons que le fait que I’énergie
d’une solution soit bornée inférieurement implique en particulier que celle-ci ne
s’approche pas trop pres d’une collision.

Linéariser le flot le long d’une solution périodique montre ’existence de blocs
de Jordan dus aux symétries, mais la réduction (obtenue en passant au quotient
par les symétries qui survivent a la fixation du moment cinétique) et la fixation
de énergie rétablissent la stabilité linéaire. C’est la théorie non linéaire qui
pose le vrai probleme, précisément ’existence de solutions quasi-périodiques
proches d’une solution périodique linéairement stable, c’est-a-dire la théorie
KAM, acronyme de Kolmogorov, Arnold, Moser, initiée par Kolmogorov dans
sa célebre adresse au Congres international des mathématiciens (ICM) en 1954.

Poincaré semble étre le premier mathématicien ayant eu une vision claire
de la nature géométrique de l'espace des phases (voir [5]). Il comprend en
particulier qu’alors qu’un tore invariant complétement résonant, simple réunion
de solutions périodiques sans interaction, n’a aucune signification dynamique
et donc aucune raison de résister a une petite perturbation, au contraire, un
tore invariant non résonant étant I’adhérence de I'une quelconque des solutions
quasi-périodiques qui le composent, est un objet dynamique signifiant qui pour-
rait éventuellement résister & une perturbation suffisamment petite a la condi-
tion qu’il satisfasse a une condition arithmétique qui contrdle la maniere dont
I’adhérence de chacune des orbites qu’il contient le remplit. C’est la fameuse



phrase de la section 149 du chapitre XIII du livre Les méthodes nouvelles de
la mécanique céleste ou, méme s’il estime peu probable une telle éventualité,
Poincaré évoque la possibilité de la convergence des séries de Lindstedt, c’est-
a~dire la possibilité de 'existence de tores invariants analytiques, du type de
ceux appelés aujourd’hui tores KAM (pour plus de détails, voir [I0]). Pour des
raisons de géométrie symplectique, la dimension des tores invariants fournis par
la théorie KAM est en général la moitié de celle de ’espace des phases. Ainsi,
dans une hypersurface d’énergie fixée, leur complémentaire est connexe des que
la dimension de I’espace des phases est supérieure ou égale a 6, ce qui est le cas
du probleme plan des trois corps apres réduction de la symétrie de rotation, un
cas ol la théorie s’applique directement. Notons que le probleme spatial est sen-
siblement plus délicat (voir [I3]). Ceci laisse comme meilleur ersatz de stabilité
ce qui est appelé la “stabilité KAM” ou une solution périodique est “entourée”
d’un ensemble de tores KAM invariants ayant une mesure positive, ce qui laisse
ouverte la possibilité de la “diffusion d’Arnold” dans laquelle les orbites du
complémentaire des tores diffusent tres lentement (estimées de Nekhoroshev)
vers Pinfini. En 2000 Carles Simé [27] a montré qu'une telle stabilité KAM a
lieu pour la solution en Huit apres réduction alors que ce n’est absolument pas le
cas pour ’équilibre relatif équilatéral de Lagrange lorsque les trois masses sont
égales [19]. Certains voient dans ce fait I'une des origines du roman de science
fiction de Liu Ci Xin Le probléme des trois corps (voir [I1]).

La question 3, cheére & Pauteur (see [22]), demande si chaque tresse & N

brins (i.e., chaque classe d’homotopie libreﬂ de CN \ A, T'espace de configura-
tion du probléme plan des N corps) est réalisée par le graphe d’une solution
périodique [0,T] 3 t = (71(t), Pa(t), - -+ ,Pn(t)) € CV \ A (A est 'ensemble des
configurations de collision). Comme dans la question 2, ’énergie totale doit étre
négative. Une question analogue concerne les tresses relatives qui sont définies
par des solutions périodiques relatives, c’est-a-dire des solutions du probleme
apres réduction par la symétrie de rotation.
Considérons le probleme plan des trois corps : une syzygie signifie un aligne-
ment des trois corps ; encore appelées éclipses pour une raison qui ne devrait
pas étonner le lecteur (voir une illustration dans [22]) ces configurations cor-
respondent aux points situés sur ’équateur de la sphere des formes. La classe
d’homotopie libre d’un lacet dans la sphere des formes privée des trois points
de collision est déterminée par sa suite de syzygies (ou éclipses ou alignements)
qui définit ses intersections successives avec 1'un des trois arcs constituant le
complémentaire dans I’équateur des trois points correspondant aux collisions ;
de cette suite se déduit une suite “réduite” de syzygies de laquelle toutes les
répétitions (stutters, bégaiements) sont éliminées. En effet, une répétition
correspond a l'intersection du méme arc successivement dans des directions op-
posées et peut donc etre éliminée par une homotopie.

Par analogie avec le cas des variétés riemaniennes compactes pour lesquelles
chaque classe d’homotopie libre est réalisée par une géodésique périodique dont

'Homotopie libre signifie qu’on ne demande pas & la déformation entre deux lacets de
C™ \ A de fixer un point-base.



la longueur est minimale parmi toutes les courbes fermées appartenant & cette
classe, on est tenté d’essayer la minimisation d’une fonctionnelle sous les con-
traintes que nous souhaitons imposer. L’utilisation du Principe de moindre ac-
tion comme outil de preuve de I'existence de solutions périodiques satisfaisant
des contraintes de nature topologique avait été proposée par Poincaré en 1892
dans une note & 1’Académie des sciences [24]. Tout-a-fait conscient du probléme
posé par les collisions — pour le potentiel Newtonien, I’action reste finie lors des
collisions, donc rien n’exclue a priori leur présence dans une orbite minimale
— Poincaré triche, remplagant le potentiel newtonien proportionnel a l'inverse
de la distance par ce qu’on appelle aujourd’hui un potentiel de force forte pro-
portionnel a l'inverse du carré de la distance. Il prouve alors facilement que
chaque classe d’homologie est réalisée par une solution périodique. Ce résultat
a été précisé par Montgomery qui montre, pour de tels potentiels, I'existence
de solutions de moment cinétique nul du probléme des trois corps qui réalisent
chaque suite de syzygies sans répétition.

Apres avoir rappelé les cas dans lesquels le probleme des collisions a été
surmonté, en particulier la solution en Huit et le lemme de Marchal [16], [6] qui
garantit ’absence de collisions dans toute orbite minimisant I’action en temps
fixé entre deux configurations données, Montgomery explique que ni le Principe
de moindre action ni la minimisation de la métrique dégénérée dite de Jacobi-
Maupertuis ne s’applique au probleme des syzygies. Il explique alors comment
dans [20] Rick Moeckel et lui ont pu résoudre le probleme pour N = 3 dans
le cas de masses presque égales a ’aide d’'une méthode dynamique qui, para-
doxalement, utilise les propriétés des solutions subissant une collision totale :
précisément, ils résolvent la question originale au prix d’admettre de tres longues
suites de répétitions et de I'impossibilité de réaliser un moment cinétique nul.
Expliquons ceci dans le cas de masses égales : le fait topologique crucial est
que, privée des trois points correspondant aux collisions doubles, la sphere des
formes se rétracte sur le graphe plongé formé par les solutions isoceles. Les
sommets de ce graphe sont d’une part les deux triangles équilatéraux de La-
grange (les poles), d’autre part les trois configurations colinéaires d’Euler qui
partagent en deux les grands cercles correspondant & chacune des trois con-
figurations isoceles. Projetées sur la sphere des formes, les solutions restent
proches de ce graphe avec des oscillations qui sont la raison des longues suites
de répétitions (bégaiements). De plus, chaque fois que change l'aréte qu’elles
suivent, elles passent tres pres d’une collision avec pour configuration limite le
triangle équilatéral de Lagrange. Il en résulte que chaque suite bi-infinie dans
laquelle le nombre de fois M que la méme syzygie se répete est assez grand
est effectivement réalisée par une solution sans collision pourvu que le moment
cinétique ne soit pas nul. Plus généralement, cette propriété vaut également
dans le cas de masses presque égales (et toujours de moment cinétique non
nul) Techniquement, ce dont il s’agit est U'intersection compliquée de variétés
invariantes de points fixes qui spiralent sur le bord de McGehee a l’inﬁnﬂ

2Lors d’une collision, la conservation de ’énergie implique que les vitesses des corps con-
cernés tendent vers I'infini ; Dick McGehee a introduit dans [I7] une compactification partielle



Plusieurs questions restent ouvertes, en particulier I’existence de solutions
périodiques relatives de moment cinétique nul qui réalisent un type donné de
tresse relative et ’existence si 'on relache la contrainte de périodicité relative
d’une solution réalisant une suite finie arbitraire d’éclipses.

A la fin de 2019, Maderna et Venturelli [15] ont montré 'existence de so-
lutions hyperboliques du probléme des N corps dont la configuration limite a
t = 400 et la configuration initiale a ¢ = 0 sont prescrites. La preuve, de na-
ture variationnelle, repose sur la théorie KAM faible et le résultat peut etre
vu comme une généralisation du théoreme de Marchal cité dans la Question 3.
Une autre preuve, basée sur une renormalisation de ’action Lagrangienne, a été
donnée plus récemment par Davide Polimeni et Suzanna Terraccini [25].

La tres courte Question 4, la seule en énergie positive, concerne le probleme
plus difficile qu’est le controle simultané des formes limites aux temps t = —oo
et t = 400. Elle commence par la remarque qu’un centre coulombien répulseur
et un centre keplerien attracteur diffractent exactement de la méme fagon un
faisceau entrant de particules. Dans les deux cas, les directions asymptotiques
0 des particules qui sortent sont denses, n’évitant que les deux angles 0 et
7. Elles définissent une “section de diffusion” do = f.db, ou 6 = f(b) est
Iexpression de 'angle de sortie comme fonction de la coordonnée du rayon
entrant sur un plan orthogonal et db est la mesure de Lebesgue. Tout ceci
se généraliserait bien & la diffusion dans le probleme newtonien des N corps
si 'asymptotique des rayons hyperboliques entrants n’était pas affectée d’un
terme logarithmique log|t|, ce qui empéche les solutions d’étre asymptotes a
une quelconque droite. Précisément, pour 3 corps dans R3, Chazy a montré
dans [4] que le développement asymptotique du vecteur position ¢(t) € (R3)3
le long d’un mouvement hyperbolique (direct (+) ou rétrograde (—)) est de la
forme

qi(t) = Ait — (VU(Ai)) 10g(|t‘) + B4+ + O <10gt|t> , t— +o0.

Asymptotiquement 1’énergie totale E est purement cinétique,

1 1
E = 5|\q(t)||2 = §||Ai||2, that is Ay = +V2FEsy,

ol s+ = limy 4 % est la forme asymptotique. Un délicat éclatement de
linfini est utilisé pour montrer que les parametres (A_, B_) de Chazy determi-
nent une trajectoire bien définie a une translation du temps pres. De plus, les
trajectoires pour lesquelles A_ est fixé (c’est-a-dire E et s_ fixés) forment un
espace affine naturellement paramétré par les B_ dans l’espace orthogonal a s_,
ce qui, joint au fait que dans un tel rayon les trajectoires restent a une distance
bornée 'une de l'autre lorsque ¢ — —oo, montre que ces B_ peuvent jouer le
role des parametres b dans I’exemple initial. Nous pouvons maintenant formuler

de ’espace des phases qui est signifiante dans la mesure ol apres renormalisation le champ de
vecteurs ne s’annule pas identiquement sur le bord qui a été ajouté a ’infini.



la derniere question ouverte : I'image diffusée d’un rayon rempli de solutions
du probleme des N corps est-elle ouverte et dense dans la sphere des direc-
tions sortantes dans I'espace de configuration (jusqu’a maintenant tout ce qu’on
sait est que son intérieur est non vide). Le résultat de Maderna et Venturelli
implique qu’un rayon donné avec A_ fixé atteint chaque point de I'espace de
configuration avant de reculer vers I'infini lorsque ¢ — +00 mais les méthodes de
minimisation ne s’appliquent pas sur la totalité de ’axe du temps. Des travaux
récents de Yu Guowei et collaborateurs attaquent le probleme dans le cas du
probléeme restreint des trois corps.

N.B. Des appendices détaillés donnent au lecteur des définitions précises de
notions indispensables a la compréhension de I'ouvrage, telles que lagrangiens
et hamiltoniens, structures symplectiques, réduction, régularisation, le groupe
orthogonal et le groupe des tresses ....

En conclusion, c’est un tres joli livre qui contient de nombreuses ouver-
tures vers des aspects variés du probleme des N corps, un livre trés personnel
également, dans lequel I'auteur évoque souvenirs, experiences, discussions et
méme quelques bons repas. Un tel livre nous rappelle que le probleme des trois
corps, un acteur clé dans le développement de notions mathématiques fonda-
mentales en topologie et en dynamique, est toujours bien vivant aujourd’hui.
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